============= Option Prices ============= Introduction ============ European option values from Black-Scholes model, allowing dividends. .. math:: :label: eq:blsprice \begin{align} C &= S \times e^{-q \times T} \times N(d1) - K \times e^{-r \times T} \times N(d2) \\\\ P &= K \times e^{-r \times T} \times N(-d2) - S \times e^{-q \times T} \times N(-d1) \end{align} of which, .. math:: :label: eq:d1d2 \begin{align} d1 &= \frac{\ln\left(\frac{S}{K}\right) + \left(r - q + \frac{\sigma^2}{2}\right) \times T}{\sigma \sqrt{T}} \\\\ d2 &= d1 - \sigma \sqrt{T} \end{align} where, - :math:`C` = Call option price - :math:`P` = Put option price - :math:`S` = Current stock price - :math:`K` = Strike price - :math:`T` = Time to expiration (in years) - :math:`r` = Risk-free interest rate (annualized) - :math:`q` = Dividend yield (annualized) - :math:`N(\cdot)` = Cumulative distribution function of the standard normal distribution - :math:`\sigma` = Volatility of the underlying asset (annualized) References ========== * `Black and Scholes (1972) `_, The Valuation of Option Contracts and a Test of Market Efficiency, *The Journal of Finance*, 27(2), 399–417. API === .. autofunction:: frds.measures.blsprice Examples ======== >>> from frds.measures import blsprice >>> blsprice(0.67, 0.7, 0.01, 5.0, 0.33, 0.002) (0.19003370474049647, 0.1925609132790535)