Source code for frds.measures._kyle_lambda
import numpy as np
[docs]
def kyle_lambda(returns: np.ndarray, signed_dollar_volume: np.ndarray) -> float:
r""":doc:`/measures/kyle_lambda`
Args:
returns (np.ndarray): ``(n,)`` array of stock returns
signed_dollar_volume (np.ndarray): ``(n,)`` array of signed dollar volume
Returns:
float: Kyle's lambda (*1000000)
.. note::
The return value is the estimated coefficient of :math:`\lambda` in equation
:math:numref:`kylelambda_regression` multiplied by 1,000,000.
"""
y = np.asarray(returns)
x = np.asarray(signed_dollar_volume)
x = x[:, np.newaxis]
a, _, _, _ = np.linalg.lstsq(x, y, rcond=None)
return a[0] * 1_000_000